Effects of nitrogen application rate and a nitrification inhibitor dicyandiamide on methanotroph abundance and methane uptake in a grazed pasture soil.

نویسندگان

  • Yu Dai
  • Hong J Di
  • Keith C Cameron
  • Ji-Zheng He
چکیده

Methane-oxidizing bacteria (methanotrophs) in the soil are a unique group of methylotrophic bacteria that utilize methane (CH4) as their sole source of carbon and energy which limit the flux of methane to the atmosphere from soils and consume atmospheric methane. A field experiment was conducted to determine the effect of nitrogen application rates and the nitrification inhibitor dicyandiamide (DCD) on the abundance of methanotrophs and on methane flux in a grazed pasture soil. Nitrogen (N) was applied at four different rates, with urea applied at 50 and 100 kg N ha(-1) and animal urine at 300 and 600 kg N ha(-1). DCD was applied at 10 kg ha(-1). The results showed that both the DNA and selected mRNA copy numbers of the methanotroph pmoA gene were not affected by the application of urea, urine or DCD. The methanotroph DNA and mRNA pmoA gene copy numbers were low in this soil, below 7.13 × 10(3) g(-1) soil and 3.75 × 10(3) μg(-1) RNA, respectively. Daily CH4 flux varied slightly among different treatments during the experimental period, ranging from -12.89 g CH4 ha(-1) day(-1) to -0.83 g CH4 ha(-1) day(-1), but no significant treatment effect was found. This study suggests that the application of urea fertilizer, animal urine returns and the use of the nitrification inhibitor DCD do not significantly affect soil methanotroph abundance or daily CH4 fluxes in grazed grassland soils.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A preliminary study to model the effects of a nitrification inhibitor on nitrous oxide emissions from urine-amended pasture

New Zealand’s grazed pastures receive large quantities of nitrogen (N) inputs from animal excreta and chemical fertilisers. While N promotes pasture growth, surplus N can cause environmental problems by leaching into waterways or by nitrifying and denitrifying to form the greenhouse gas, nitrous oxide (N2O). Various approaches have been attempted to mitigate the economic and environmental impac...

متن کامل

A lysimeter study of nitrate leaching from grazed grassland as affected by a nitrification inhibitor, dicyandiamide, and relationships with ammonia oxidizing bacteria and archaea

Nitrate (NO3 ) can contribute to surface water eutrophication and is deemed harmful to human health if present at high concentrations in the drinking water. In grazed grassland, most of the NO3 -N leaching occurs from animal urine-N returns. The objective of this study was to determine the effectiveness of a nitrification inhibitor, dicyandiamide (DCD), in decreasing NO3 ) leaching in three dif...

متن کامل

Changes in Denitrification Rate, Bacterial Denitrifier Community Structure and Abundance in Dairy-grazed Pasture Soils Treated with Cattle Urine and Dcd

Urine excreted by cattle can produce very high concentrations of available N in relatively small volumes of soil and lead to high nitrous oxide (N2O) emissions. Application of the nitrification inhibitor dicyandiamide (DCD) can inhibit nitrification. DCD application results in lower nitrate (NO3 ) concentrations and N2O emissions from denitrification in urine affected soils. However, the effect...

متن کامل

Nitrous Oxide Emissions from Dairy Farmlets, as Affected by Use of a Nitrification Inhibitor and a Winter Restricted Grazing Strategy

Experimental farmlets at DairyNZ’s Prototype Farm near Hamilton were used to determine potential reductions in nitrous oxide (N2O) emissions from use of a nitrification inhibitor and a restricted grazing regime. A control farmlet was managed under a conventional rotational grazing regime, while a “tight nitrogen” farmlet was managed under a similar grazing regime to that on the control farmlet,...

متن کامل

Potential Pasture Nitrogen Concentrations and Uptake from Autumn or Spring Applied Cow Urine and DCD under Field Conditions

Nitrogen (N) cycling and losses in grazed grassland are strongly driven by urine N deposition by grazing ruminants. The objective of this study was to quantify pasture N concentrations, yield and N uptake following autumn and spring deposition of cow urine and the effects of fine particle suspension (FPS) dicyandiamide (DCD). A field plot study was conducted on the Lincoln University dairy farm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science and pollution research international

دوره 20 12  شماره 

صفحات  -

تاریخ انتشار 2013